

K25P 1138

Reg. No. :	
Name :	

IV Semester M.Sc. Degree (C.B.S.S. – Supple./Imp.) Examination, April 2025 (2021 and 2022 Admissions) MAT 45 02 Fourier and Ways let Applysic

MAT 4E 02 – Fourier and Wavelet Analysis

Time: 3 Hours Max. Marks: 80

PART - A

Answer four questions from this part. Each question carries 4 marks.

- 1. Suppose $z, w \in l^2(\mathbb{Z}_N)$. For $k \in \mathbb{Z}$, prove that $z*\tilde{w}(k) = \langle z, R_k w \rangle$.
- 2. Define pth stage wavelet filter sequence.
- 3. Define upsampling operator on \mathbb{Z} .
- 4. Define system matrix of two vectors in $l^2(\mathbb{Z})$.
- 5. Define the Fourier transform of the function $f \in L'(\mathbb{R})$.
- 6. Give an inner product on $L^2(\mathbb{R})$.

 $(4 \times 4 = 16)$

PART – B

Answer **any four** questions from this part without omitting **any** Unit. **Each** question carries **16** marks.

Unit - I

7. a) Suppose $M\in\mathbb{N}$, N=2M and $w\in l^2(Z_N)$. Then prove that $\left\{R_{2k}w\right\}_{k=0}^{M-1}$ is an orthonormal set with M elements if and only if

$$\left| \hat{w}(n) \right|^2 + \left| \hat{w}(n+M) \right|^2 = 2 \text{ for } n = 0,1...,M-1$$

b) State and prove the folding lemma for vectors in $I^2(Z_N)$.

- 8. a) Suppose $N = 2^n$, $1 \le p \le n$ and u_1 , v_1 , u_2 , v_2 , ..., u_p , v_p form a p^{th} stage wavelet filter sequence. Suppose $z \in I^2(Z_N)$. Then prove that the output $\{x_1,\,x_2,\,x_3,...,x_p,\,y_p\}$ of the analysis phase of the corresponding p^{th} stage wavelet filter bank can be computed using no more than 4N + N log₂ N complex multiplications.
 - b) Suppose N is divisible by 2^p . Suppose $u, v \in l^2(\mathbb{Z}_N)$ are such that the system matrix A(n) is unitary for all n. Let $u_1=u$ and $v_1=v$ and for all l=2,3,...,p, define u₁ and v₁ by the equations.

$$u_1(n) = \sum_{k=0}^{2^{l-1}-1} u_1 \left(n + \frac{kN}{2^{l-1}} \right)$$

and

$$v_{_{I}}(n) = \sum_{k=0}^{2^{l-1}-1} v_{_{1}}\!\!\left(n + \frac{kN}{2^{l-1}}\right)$$

Then prove that u_1 , v_1 , u_2 , v_2 ,...., u_p , v_p is a p-th stage wavelet filter sequence.

9. a) Suppose N is divisible by 2^{I} , $g_{I-1} \in I^{2}(\mathbb{Z}_{N})$ and the set

$$\left\{R_{2^{l-1}{}_k}g_{l-1}\right\}_{k=0}^{(N/2^{l-1})-1}$$

is orthonormal and has N/2^{l-1} elements. Suppose $u_l, v_l \in l^2$ ($\mathbb{Z}_{N/2}^{l-1}$) and the system matrix $A_1(n)$ is unitary for all $n = 0, 1, ..., (N/2^1)-1$. Define

$$f_l = g_{l-1} * U^{l-1} (v_1)$$
 and $g_l = g_{l-1} * U^{l-1} (u_1)$.

Define spaces

$$\begin{split} &V_{_{-l+1}} = span \Big\{ R_{_{2^{l-1}}{_k}} g_{_{l-1}} \Big\}_{_{k=0}}^{^{(N/2^{l-1})-1}} \\ &W_{_{-l}} = span \Big\{ R_{_{2^{l}{_k}^{f}l}} \Big\}_{_{k=0}}^{^{(N/2^{l})-1}} \end{split}$$

$$W_{-1} = span \left\{ R_{2^{l_k f_l}} \right\}_{k=0}^{(N/2)}$$

and
$$V_{-l} = span\{R_2 I_k g_l\}_{k=0}^{(N/2^l)-1}$$

Then prove that $V_{-l} \oplus W_{-l} = V_{-l+1}$.

b) Suppose N is divisible by 2^{I} , $x,y,w\in I^{2}$ ($Z_{N/2I}$), and $z\in I^{2}$ (Z_{N}). Then prove that $D^{l}(z)*w = D^{l}(z*U^{l}(w))$ and $U^{I}(x*y) = U^{I}(x)*U^{I}(y)$.

Unit - II

10. Suppose $\{a_i\}_{i\in Z}$ is an orthonormal set in a Hilbert space H and let

$$S = \left\{ \sum_{j \in z} z(j)a_j : z = (z(j))_{j \in z} \in I^2(Z) \right\}.$$

Define
$$P_s(f) = \sum_{j \in z} \langle f, a_j \rangle a_j$$
.

Then prove the following:

- a) For every $f \in H$, $P_s(f) \in S$;
- b) The transformation $P_s: H \rightarrow S$ is linear;
- c) If $s \in S$, then $P_s(s) = s$;
- d) $\langle f P_s(f), s \rangle = 0$ for any $f \in H$ and $s \in S$.
- 11. a) If f and g are members of $L^2([-\pi,\pi))$, then prove that $f.g \in L'([-\pi,\pi))$.
 - b) Suppose $\theta_0 \in (-\pi, \pi)$ and $\alpha > 0$ is sufficiently small that $-\pi < \theta_0 \alpha < \theta_0 + \alpha < \pi$.

Define intervals

$$I = (\theta_0 - \alpha, \theta_0 + \alpha),$$
 and
$$J = (\theta_0 - \alpha/2, \theta_0 + \alpha/2).$$

Then prove that there exists $\delta > 0$ and a sequence of real-valued trigonometric polynomials $\{p_n(\theta)\}_{n=1}^{\infty}$ such that

- i) $p_n(\theta) \ge 1$ for $\theta \in I$
- ii) $p_n(\theta) \ge (1+\delta)^n$ for $\theta \in J$ iii) $|p_n(\theta)| \le 1$ for $\theta \in [-\pi,\pi) \setminus I$.
- 12. a) Suppose $f \in L'([-\pi,\pi))$ and

$$\left\langle f,e^{i\,n\theta}\right\rangle =\frac{1}{2\pi}\int\limits_{-\pi}^{\pi}f(\theta)e^{-in\theta}d\theta=0 \text{ for all } n\in Z\,.$$

Then prove that $f(\theta) = 0$ a.e.

b) Suppose H is a Hilbert space, $\{a_i\}_{i\in Z}$ is an orthonormal set in H and $f\in H$.

Then prove that the sequence $\{\langle f,\, a_j\rangle\}_{j\in Z}$ belongs to $I^2(\mathbb{Z})$ with

$$\sum\nolimits_{j\in z}\left|\left\langle f,a_{j}\right\rangle \right|^{2}\leq\left\| f\right\| ^{2}.$$

Unit - III

- 13. a) By means of examples, show that there is no containment between $L'(\mathbb{R})$ and $L^2(\mathbb{R})$.
 - b) Let $g\in L'(\mathbb{R})$ and t>0. Then prove that $g_t:\mathbb{R}{\to}\mathbb{C}$ defined by

$$g_t(x) = \frac{1}{t}g\left(\frac{x}{t}\right)$$

is an element in L'(\mathbb{R}) and $\|g_t\|_1 = \|g\|_1$.

14. a) If $f \in L'(\mathbb{R})$, then show that

$$\left| \int_{\mathbb{R}} f(x) dx \right| \leq \int_{\mathbb{R}} \left| f(x) \right| dx = \left\| f \right\|_{1}$$

- b) Suppose f, $g \in L'(\mathbb{R})$. Then prove that $f * g \in L'(\mathbb{R})$ with $\|f * g\|_1 \le \|f\|_1 \|g\|_1$
- 15. a) Prove that the trigonometric system is complete in $L^2([-\pi, \pi))$.
 - b) Suppose f, $g \in L^2(\mathbb{R})$ and $y \in \mathbb{R}$. Then prove that $\langle f, R_v g \rangle = (f * \tilde{g})(y)$. (4×16=64)